

Magnetic Materials Laboratory

Center of Excellence in Magnetic Sensor and Actuator Materials

Prof. Siva Guruswamy
Prof. Michael K. McCarter

Department of Metallurgical Engineering University of Utah

Off-Site Review, May 10, 2005

Magnetism is all around us, and the magnetic materials and devices impact most facets of our daily life.

- Established in 1991, MML is a state of the art magnetics laboratory
 - **Engaged in developing various** magnetic technologies that include
 - Magnetostrictive Materials and devices
 - **Magnetic Storage Media**
 - Nd, Fe₁₄B based High Energy Density **Permanent Magnets**
 - Magneto-resistive devices
 - Novel processing approaches
 - Advanced materials characterization

Technology

Discovery of Large Low-Field Magnetostriction in Rare-Earth Free and Ductile FeGa Alloys at MML

Actuation Function

- Magnetostriction of Fe increased by 10 times.
- Magnetic fields <100 Oe needed
- Very low hysteresis
- Excellent mechanical properties
- High temperature operation
- No refrigeration/cooling system
- Minimal design restrictions

Joint patent application with Navy

Appliation and removal of load generates electrical signal

Sensing Function

Classes of Smart Materials

Shape-memory alloys

Magnetostrictive Alloys

Piezoelectric alloys

Electrorheological & Magnetorheological Fluids

Magnetostrictive Materials

- Belong to the class of Smart Materials
- Analogous to piezoelectric materials but
 - Do not require electrical contact
 - Large frequency bandwidth
 - Large displacement per single element
- Rugged
- High stiffness and large delivered force (50 MPa)
- High energy density (14-25 kJ/m³)

Applications in Sensing and Actuation

Linear motor/Actuator

Active Vibration Damping Devices

Acoustic Sensor

Speaker

Nano-Positioning Devices

Uniqueness compared to currently widely used sensor and actuator alloy

Material	Saturation Strain (*10 ⁻⁶)	Curie Temperature	Operating Temperature Range	Coercivity (Oe)	Saturation Field (Oe)
Terfenol-D	1200 (Typical)	376 °C	-50 - +72 °C	~35	1000-2000
FeGa	200-400 (Typical)	650-780 °C	Very Broad Range	<5	<100
	(>400 ppm feasible)		(Cryogenic to >>150 °C)		

Mechanical Properties

Material	Tensile strength (MPa)	Ductility	Young 's modulus (GPa)	Cost
Terfenol-D	28-56	0%/Brittle	~30	Expensive
FeGa	>500	Up to 25%/ Ductile	110-170	Cheaper

FeGa alloys will replace widely used Terfenol-D in many applications

Center has a core technology that has a broad application and product range

Phase 1:

Products with a rapid product development and marketing cycle (2 Years)

Ultrasonic cleaners and sonic devices

Linear motors and Precision positioning systems,

ABS modules and micro-valves

Phase 2

Products with a long product development and marketing cycle 3-5 Years

Torque sensors for mining applications

Position and level sensors and other products.

Industrial Ultrasonic Cleaners & Sonic Devices

Can operate over a broad frequency range that cover the sonic and ultrasonic range.

Nano-Positioning and Linear motors

Controlled movements in the Angstrom and nm level.

Used in nano- and micro-level machining and measurements

Anti-lock Breaking System Modules

Micro-valves

Position and Level Sensors

Accelerometers

Torque Sensors

U.S. ULTRASONIC MARKET TO GROW TO \$ 5.35 BILLION BY 2008

	\$ Millions		
	2005	2008	
High Power Ultrasonics	845	1,055	
Total all Ultrasonics	4,190	5,353	

INDUSTRIAL SENSOR MARKET TO CROSS \$ 6.7 BILLION BY 2006

Center Revenue Projections

		(\$ Millions)			
	2005	2007	2008	2009	2010
Market share in High Power Ultrasonic and other devices (Goal)	-	_	13 (~1%)	126 (~12 %)	175 (~17%)
Total Sales	-	-	13	126	175
Revenues	0.5*	2.5*	13.1 M	126.1	175.1
Expenses	0.5	2.5	12.5 M	119.8	164.2
Net Income	0	0	0.5 M	6.3	8.9

^{*} Investments/grants for product development and marketing

Technology Rights

- Pending Fundamental Patent Application on FeGa alloys
- 3 Invention disclosures, 2 Provisional Patent applications being filed

Other Patents

- 1 Patent on Terfenol-D composite
- 2 Patents on coating for blood contacting devices

TEAM

- Dr. Siva Guruswamy, Professor, Metallurgical Eng., and Director of MML, U of U
 Magnetic Material Processing, Device Design and Development, Facility development, Marketing, Direct Center Activities
- Dr. Michael K. McCarter, Prof. & Chair, Mining Eng., U of U
 Product Performance Testing and design input, Material
 Processing
- Dr. Rajiv Kulkarni/ Zach Miles Esq., Technology Transfer Office, IP protection/Marketing
- Marketing Consultant
- Graduate students

Financial and In-kind Support

National Science Foundation (Current)

University of Utah (Current)

State of Utah Mineral Leasing Grants (Past)

PI Donations (Current)

Office of Naval Research Travel Grant (Past)

Partners/Supporters

- ENECO, Inc, Salt Lake City
- Ceramatec, Inc, Salt Lake City
- MMC Technolgies, Division of Maxtor, San Jose, CA
- TerraTek, Salt Lake City
- US Magnesium LLC, Salt Lake City,
- BARD Access Systems, Salt Lake City,
- Others (...)

Financial and In-kind Support

- National Science Foundation (Current)
- University of Utah (Current)
- State of Utah Mineral Leasing Grants (Past)
- PI Donations (Current)
- Office of Naval Research Travel Grant (Past)
 Partners/Supporters
- ENECO, Inc, Salt Lake City
- Ceramatec, Inc, Salt Lake City
- MMC Technolgies, Division of Maxtor, San Jose, CA
- TerraTek, Salt Lake City
- US Magnesium LLC, Salt Lake City,
- BARD Access Systems, Salt Lake City,
- Others (...)